Part Number Hot Search : 
58M08 2SC28 05A19 T221031 ADL537 1N6098R 2SD227 DG447
Product Description
Full Text Search
 

To Download APW7068KE-TRG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . s y n c h r o n o u s b u c k p w m a n d l i n e a r c o n t r o l l e r w i t h 0 . 8 v r e f e r e n c e o u t v o l t a g e the apw7068 integrates synchronous buck pwm, linear controller, and 0.8v reference out voltage, as well as the monitoring and protection functions into a single package. the fixed 300khz switching frequency syn- chronous pwm controller drives dual n-channel mosfets, which provides one controlled power output with over-voltage and over-current protections. linear controller drives an external n-channel mosfet with under-voltage protection. the apw7068 provides excellent regulation for output load variation. an internal 0.8v temperature-compensated reference voltage is designed to meet the requirement of low output voltage applications. the apw7068 with excellent protection functions: por, ocp, ovp and uvp. the power-on-reset (por) circuit can monitor v cc12 supply voltage exceeds its threshold voltage while the controller is running, and a built-in digital soft-start provides both outputs with controlled rising voltage. the over-current protection (ocp) monitors the output current by using the voltage drop across the lower mosfet?s r ds(on) , comparing with the voltage of ocset pin, v ocset. the maximum v ocset voltage is limited to the internal default value 0.25v. in addition, when ocset pin is floating (no r ocset resistor), the over current thresh- old will also be internal default value, 0.25v. when the output current reaches the trip point, the controller will shutdown the ic directly, and latch the converter?s output. the under-voltage protection (uvp) monitors the volt- age of fbl pin for short-circuit protection. when the v fbl is less than 50% of v ref , the controller will shutdown the ic directly. the over-voltage protection (ovp) monitors the voltage of fb. when the v fb is over 135% of v ref , the controller will make low-side gate signal fully turn on until the fault events are removed. f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s two regulated voltages and ref_out - s y n c h r o n o u s b u c k c o n v e r t e r - l i n e a r r e g u l a t o r - r e f _ o u t = 0 . 8 v 1% with 3ma s o u r c e c u r r e n t s i n g l e 1 2 v p o w e r s u p p l y r e q u i r e d e x c e l l e n t b o t h o u t p u t v o l t a g e r e g u l a t i o n - 0 . 8 v i n t e r n a l r e f e r e n c e - 1% over l i n e v o l t a g e a n d t e m p e r a t u r e i n t e g r a t e d s o f t - s t a r t f o r p w m a n d l i n e a r o u t p u t s 3 0 0 k h z f i x e d s w i t c h i n g f r e q u e n c y v o l t a g e m o d e p w m c o n t r o l d e s i g n a n d u p t o 8 9 % ( t y p . ) d u t y c y c l e u n d e r - v o l t a g e p r o t e c t i o n m o n i t o r i n g l i n e a r o u t p u t o v e r - v o l t a g e p r o t e c t i o n m o n i t o r i n g p w m o u t p u t o v e r - c u r r e n t p r o t e c t i o n f o r p w m o u t p u t - s e n s e l o w - s i d e m o s f e t ? s r d s ( o n ) s o p - 1 4 , q s o p - 1 6 a n d c o m p a c t q f n 4 x 4 - 1 6 p a c k a g e s lead free and green devices available (rohs compliant) g r a p h i c c a r d s s i m p l i f i e d a p p l i c a t i o n c i r c u i t v out1 v in1 l q1 pwm controller q2 linear controller v out2 q3 v in2 12v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 o r d e r i n g a n d m a r k i n g i n f o r m a t i o n p i n c o n f i g u r a t i o n symbol parameter rating unit v cc12 vcc 12 to gnd - 0.3 to +16 v v boot boot to phase - 0.3 to +16 v v ugate ugate to phase <400ns pulse width >400ns pulse width - 5 to v boot +5 - 0.3 to v boot +0.3 v v lgate lgate to p gnd <400ns pulse width >400ns pulse width - 5 to v cc12 +5 - 0.3 to v cc12 +0.3 v v phase phase to gnd < 2 00ns pulse width > 2 00ns pulse width - 10 to + 30 - 0.3 to 16 v v drive drive to gnd 12 v v fb, v fbl, v comp, v fs_dis fb, fbl, comp, fs_dis to gnd - 0.3 to 7 v a b s o l u t e m a x i m u m r a t i n g s (note 1) 1 3 2 4 6 5 7 8 b o o t f s _ d i s drive fb comp a g n d fbl d g n d u g a t e p h a s e ocset lgate pgnd v c c 1 2 ref_out v c c 1 2 qfn 4x4-16 top view 12 10 11 9 15 16 14 13 metal gnd pad (bottom) 1 3 2 4 6 5 7 8 boot fs_dis drive fb comp gnd fbl gnd 16 14 15 13 11 12 9 ugate phase ocset lgate pgnd vcc12 ref_out vcc12 qsop-16 top view 10 drive 1 3 2 4 6 5 7 boot fs_dis fb comp gnd fbl 14 12 13 11 9 10 8 ugate phase ocset lgate pgnd vcc12 ref_out sop-14 top view n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j - s t d - 0 2 0 c f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . a n p e c d e f i n e s ? g r e e n ? t o m e a n l e a d - f r e e ( r o h s c o m p l i a n t ) a n d h a l o g e n f r e e ( b r o r c l d o e s n o t e x c e e d 9 0 0 p p m b y w e i g h t i n h o m o g e n e o u s m a t e r i a l a n d t o t a l o f b r a n d c l d o e s n o t e x c e e d 1 5 0 0 p p m b y w e i g h t ) . apw7068 handling code temp. range package code apw7068 k : apw7068 xxxxx xxxxx - date code assembly material apw7068 qa : xxxxx - date code apw7068 m : xxxxx - date code apw7068 xxxxx apw7068 xxxxx package code k : sop-14 m : qsop - 16 qa : qfn 4x4-16 temp. range e : -20 to 70 c handling code tr : tape & reel assembly material l : lead free device g : halogen and lead free device
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 3 symbol parameter rating unit v pgnd pgnd to gnd - 0.3 to +0.3 v t j junction temperature range - 20 to +150 c t stg storage temperature - 65 ~ 150 c t sdr maximum lead soldering temperature, 10 seconds 260 c r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s e l e c t r i c a l c h a r a c t e r i s t i c s a b s o l u t e m a x i m u m r a t i n g s ( c o n t . ) n o t e 1 : a b s o l u t e m a x i m u m r a t i n g s a r e t h o s e v a l u e s b e y o n d w h i c h t h e l i f e o f a d e v i c e m a y b e i m p a i r e d . e x p o s u r e t o a b s o l u t e m a x i m u m r a t i n g c o n d i t i o n s f o r e x t e n d e d p e r i o d s m a y a f f e c t d e v i c e r e l i a b i l i t y . symbol parameter rating unit v cc12 ic supply voltage 10.8 to 13.2 v v in1 converter input voltage 2. 9 to 13.2 v v out1 converter output voltage 0. 9 to 5 v i out1 converter output current 0 to 30 a i out2 linear output current 0 to 3 a t a ambient tempera ture range - 20 to 70 c t j junction temperature range - 2 0 to 125 c u n l e s s o t h e r w i s e s p e c i f i e d , t h e s e s p e c i f i c a t i o n s a p p l y o v e r v c c 1 2 = 1 2 v , a n d t a = - 2 0 ~ 7 0 c . t y p i c a l v a l u e s a r e a t t a = 2 5 c . apw7068 symbol parameter test conditions min typ max unit input supply current vcc12 supply current (shutdown mode) ugate, lgate and drive open; fs_dis = gnd 4 6 ma i cc12 vcc12 supply current ugate, lgate and drive open 8 12 ma power - on - reset rising vcc12 threshold 7.7 7.9 8.1 v falling vcc12 threshold 7.2 7.4 7.6 v oscillator accuracy - 15 +15 % f osc oscillator frequency 255 30 0 345 khz v osc ramp amplitude (nominal 1.2v to 2.7v) (note 2 ) 1 .5 v duty maximum duty cycle 89 % reference v ref reference voltage for error amp1 and amp2 0.792 0.80 0.808 v reference voltage tolerance - 1 +1 % pwm load regulation i out 1 = 0 to 10a 1 % linear load regulation i out 2 = 0 to 3a 1 % pwm e rr or amplifier gain open loop gain r l = 10k, c l = 10p f (note 2) 93 db gbwp open loop bandwidth r l = 10k, c l = 10p f (note 2) 20 mhz
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 4 e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) u n l e s s o t h e r w i s e s p e c i f i e d , t h e s e s p e c i f i c a t i o n s a p p l y o v e r v c c 1 2 = 1 2 v , a n d t a = - 2 0 ~ 7 0 c . t y p i c a l v a l u e s a r e a t t a = 2 5 c . apw7068 symbol parameter test conditions min typ max unit pwm e rr or amplifier (cont.) sr slew rate r l = 10k, c l = 10p f (note 2) 8 v/ m s fb input current v fb = 0.8v 0.1 1 m a v co mp comp high voltage 5 v v co mp comp low voltage 0 v i comp co mp source current v co mp = 2v 12 ma i comp comp sink current v co mp = 2v 12 ma gate drivers i ugate upper gate source current 2.5 a i ugate upper gate s ink current v boot = 12 v, v ugate - v phase = 2 v 2 a i lgate low er gate source current 2.5 a i lgate low er gate s ink current v cc12 = 12 v , v lgate = 2 v 3.5 a r ugate upper gate s ource impedance v boot = 12v, i ugate = 0. 1 a 2.25 3.375 w r ugate upper gate sink impedance v boot = 12v, i ugate = 0. 1 a 0.7 1.05 w r l gate lower gate source impedance v cc12 = 12v, i l gate = 0. 1 a 2.25 3.375 w r lgate lower gate sink impedance v cc12 = 12v, i l gate = 0. 1 a 0.4 0.6 w t d dead time 20 ns linear regulator gain open loop gain r l = 10k, c l = 10p f (note 2) 70 db gbwp open loop bandwidth r l = 10k, c l = 10p f (not e 2) 19 mhz sr slew rate r l = 10k, c l = 10p f (note 2) 6 v/ m s fbl input current v fbl = 0.8 v 0.1 1 m a v drive drive high voltage 10 v v drive drive low voltage 0 v i drive drive source current v drive = 5v 4 ma i drive drive sink current v drive = 5v 3 ma protection v fb - o v fb over voltage protection tri p point percent of v ref 135 % v fbl - uv fbl under voltage protection trip point percent of v ref 50 % i ocset ocset current source 3 6 40 4 4 m a soft start t ss internal soft - star t interval (note3) f osc =300khz 8.5 m s ref _ out v ref _ out output voltage 0.792 0.800 0.808 v offset voltage - 8 +8 mv i ref _ out source current 1.5 3 ma sink current 0.25 0.5 ma output capacitance 0.4 1 2.2 m f n o t e 2 : g u a r a n t e e d b y d e s i g n .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 5 t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ugate source current (a) u g a t e v o l t a g e ( v ) u g a t e s o u r c e c u r r e n t v s . u g a t e v o l t a g e ugate sink current (a) u g a t e v o l t a g e ( v ) u g a t e s i n k c u r r e n t v s . u g a t e v o l t a g e lgate source current (a) l g a t e v o l t a g e ( v ) l g a t e s o u r c e c u r r e n t v s . l g a t e v o l t a g e lgate sink current (a) l g a t e v o l t a g e ( v ) l g a t e s i n k c u r r e n t v s . l g a t e v o l t a g e reference voltage(v) j u n c t i o n t e m p e r a t u r e ( c ) v r e f v s . j u n c t i o n t e m p e r a t u r e 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 0 1 2 3 4 v boot =12v v phase =0v v boot =12v v phase =0v v cc12 =12v v cc12 =12v 0.8005 0.801 0.8015 0.802 0.8025 0.803 0.8035 0.804 -40 -20 0 20 40 60 80 100 120 v ref
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 6 o p e r a t i n g w a v e f o r m s p o w e r o n p o w e r o f f 1 1 2 2 1 1 2 2 3 3 3 3 e n s h u t d o w n 1 1 2 2 1 1 2 2 c h 1 : v f s _ d i s ( 1 v / d i v ) c h 2 : v d r i v e ( 5 v / d i v ) c h 3 : v o u t 1 ( 1 v / d i v ) c h 4 : v o u t 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v 3 3 3 3 c h 1 : v c c 1 2 ( 1 0 v / d i v ) c h 2 : v o u t 1 ( 1 v / d i v ) c h 3 : v o u t 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : v f s _ d i s ( 1 v / d i v ) c h 2 : v d r i v e ( 5 v / d i v ) c h 3 : v o u t 1 ( 1 v / d i v ) c h 4 : v o u t 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : v c c 1 2 ( 1 0 v / d i v ) c h 2 : v o u t 1 ( 1 v / d i v ) c h 3 : v o u t 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v 4 4 4 4 v cc12 =12v, v in1 =12v,v in2 =3.3v v out1 =1.2v,v out2 =2.5v l=1uh v cc12 =12v, v in1 =12v,v in2 =3.3v v out1 =1.2v,v out2 =2.5v l=1uh v cc12 =12v, l=1uh, v in1 =12v, v in2 =3.3v v out1 =1.2v, v out2 =2.5v v cc12 =12v, l=1uh, v in1 =12v, v in2 =3.3v v out1 =1.2v, v out2 =2.5v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 7 o p e r a t i n g w a v e f o r m s ( c o n t . ) u g a t e r i s i n g u g a t e f a l l i n g 1 1 2 2 1 1 2 2 3 3 3 3 o v p _ p w m c o n t r o l l e r ( v f b > 1 3 5 % v r e f ) u v p _ l i n e a r r e g u l a t o r ( v f b l < 5 0 % v r e f ) 1 1 2 2 1 1 2 2 3 3 3 3 4 4 c h 1 : v u g a t e ( 2 0 v / d i v ) c h 2 : v p h a s e ( 1 0 v / d i v ) c h 3 : v l g a t e ( 1 0 v / d i v ) t i m e : 5 0 n s / d i v c h 1 : v c c 1 2 ( 1 v / d i v ) c h 2 : v l g a t e ( 1 v / d i v ) c h 3 : v o u t 1 ( 5 0 0 m v / d i v ) c h 4 : v o u t 2 ( 2 v / d i v ) t i m e : 1 0 m s / d i v c h 1 : v u g a t e ( 2 0 v / d i v ) c h 2 : v p h a s e ( 1 0 v / d i v ) c h 3 : v l g a t e ( 1 0 v / d i v ) t i m e : 5 0 n s / d i v c h 1 : v f b l ( 1 v / d i v ) c h 2 : v d r i v e ( 5 v / d i v ) c h 3 : v o u t 2 ( 2 v / d i v ) t i m e : 1 0 0 m s / d i v v cc12 =12v, v in1 =12v v out1 =1.2v v cc12 =12v, v in1 =12v v out1 =1.2v v cc12 =12v, v in2 =3.3v v out2 =2.5v, i out2 =3a v cc12 =12v, v in1 =12v v out1 =1.2v, v out2 =2.5v, l=1uh
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 8 c h 1 : v o u t 1 ( 1 0 0 m v / d i v , a c ) c h 2 : v u g a t e ( 2 0 v / d i v ) c h 3 : i o u t 1 ( 1 0 a / d i v ) t i m e : 2 0 m s / d i v c h 1 : v o u t 1 ( 1 0 0 m v / d i v , a c ) c h 2 : v u g a t e ( 2 0 v / d i v ) c h 3 : i o u t 1 ( 1 0 a / d i v ) t i m e : 5 0 m s / d i v c h 1 : v o u t 1 ( 1 0 0 m v / d i v , a c ) c h 2 : v u g a t e ( 2 0 v / d i v ) c h 3 : i o u t 1 ( 1 0 a / d i v ) t i m e : 2 0 m s / d i v i o u t 1 = 0 a 1 0 a i o u t 1 = 0 a 1 0 a 0 a i o u t 1 = 1 0 a 0 a l o a d t r a n s i e n t r e s p o n s e ( p w m c o n t r o l l e r ) - v c c 1 2 = 1 2 v , v i n 1 = 1 2 v , v o u t 1 = 2 v , f o s c = 3 0 0 k h z - i o u t 1 s l e w r a t e = 1 0 a / m s c h 1 : v o u t 2 ( 1 0 0 m v / d i v , a c ) c h 2 : i o u t 2 ( 2 a / d i v ) t i m e : 1 m s / d i v c h 1 : v o u t 2 ( 1 0 0 m v / d i v , a c ) c h 2 : i o u t 2 ( 2 a / d i v ) t i m e : 1 0 m s / d i v c h 1 : v o u t 2 ( 1 0 0 m v / d i v , a c ) c h 2 : i o u t 2 ( 2 a / d i v ) t i m e : 1 m s / d i v i o u t 2 = 0 a 3 a i o u t 2 = 0 a 3 a 0 a i o u t 2 = 3 a 0 a l o a d t r a n s i e n t r e s p o n s e ( l i n e a r r e g u l a t o r ) - v c c 1 2 = 1 2 v , v i n 2 = 3 . 3 v , v o u t 2 = 2 . 5 v - i o u t 2 s l e w r a t e = 3 a / m s 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 1 1 2 2 1 1 2 2 o p e r a t i n g w a v e f o r m s ( c o n t . )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 9 o p e r a t i n g w a v e f o r m s ( c o n t . ) o v e r c u r r e n t p r o t e c t i o n s h o r t t e s t a f t e r p o w e r r e a d y 1 1 2 2 1 1 2 2 3 3 3 3 s h o r t t e s t b e f o r e p o w e r o n 1 1 2 2 3 3 4 4 c h 1 : v o u t 1 ( 1 v / d i v ) c h 2 : v d r i v e ( 5 v / d i v ) c h 3 : v u g a t e ( 2 0 v / d i v ) c h 4 : i l ( 1 0 a / d i v ) t i m e : 5 0 m s / d i v c h 1 : v c c 1 2 ( 1 0 v / d i v ) c h 2 : v o u t 1 ( 1 v / d i v ) c h 3 : v u g a t e ( 2 0 v / d i v ) c h 4 : i l ( 1 0 a / d i v ) t i m e : 2 m s / d i v 4 4 4 4 c h 1 : v o u t 1 ( 1 v / d i v ) c h 2 : v d r i v e ( 5 v / d i v ) c h 3 : v u g a t e ( 2 0 v / d i v ) c h 4 : i l ( 1 0 a / d i v ) t i m e : 5 0 m s / d i v v cc12 =12v, v in1 =12v, v out1 =1.2v, v in2 =3.3v, v out2 =2.5v, l=1uh c out =470ufx2, r ocset =1k [ , r ds(on) =4m [ v cc12 =12v, v in1 =12v, v out1 =1.2v, v in2 =3.3v, v out2 =2.5v, l=1uh c out =470ufx2, r ocset =1k [ , r ds(on) =4m [ v cc12 =12v, v in1 =12v, v out1 =1.2v, v in2 =3.3v, v out2 =2.5v, l=1uh
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 0 f u n c t i o n p i n d e s c r i p t i o n v c c 1 2 p o w e r s u p p l y i n p u t p i n . c o n n e c t a n o m i n a l 1 2 v p o w e r s u p p l y t o t h i s p i n . t h e p o w e r - o n r e s e t f u n c t i o n m o n i t o r s t h e i n p u t v o l t a g e a t t h i s p i n . i t i s r e c o m m e n d e d t h a t a d e c o u p l i n g c a p a c i t o r ( 1 t o 1 0 m f ) b e c o n n e c t e d t o g n d f o r n o i s e d e c o u p l i n g . b o o t t h i s p i n p r o v i d e s t h e b o o t s t r a p v o l t a g e t o t h e u p p e r g a t e d r i v e r f o r d r i v i n g t h e n - c h a n n e l m o s f e t . a n e x t e r n a l c a - p a c i t o r f r o m p h a s e t o b o o t , a n i n t e r n a l d i o d e , a n d t h e p o w e r s u p p l y v a l t a g e v c c 1 2 , g e n e r a t e s t h e b o o t s t r a p v o l t - a g e f o r t h e u p p e r g a t e d i v e r ( u g a t e ) . p h a s e t h i s p i n i s t h e r e t u r n p a t h f o r t h e u p p e r g a t e d r i v e r . c o n n e c t t h i s p i n t o t h e u p p e r m o s f e t s o u r c e , a n d c o n n e c t a c a p a c i t o r t o b o o t f o r t h e b o o t s t r a p v o l t a g e . t h i s p i n i s a l s o u s e d t o m o n i t o r t h e v o l t a g e d r o p a c r o s s t h e l o w e r m o s f e t f o r o v e r - c u r r e n t p r o t e c t i o n . g n d t h i s p i n i s t h e s i g n a l g r o u n d p i n . c o n n e c t t h e g n d p i n t o a g o o d g r o u n d p l a n e . p g n d t h i s p i n i s t h e p o w e r g r o u n d p i n f o r t h e l o w e r g a t e d r i v e r . i t s h o u l d b e t i e d t o g n d p i n o n t h e b o a r d . c o m p t h i s p i n i s t h e o u t p u t o f p w m e r r o r a m p l i f i e r . i t i s u s e d t o s e t t h e c o m p e n s a t i o n c o m p o n e n t s . f b t h i s p i n i s t h e i n v e r t i n g i n p u t o f t h e p w m e r r o r a m p l i f i e r . i t i s u s e d t o s e t t h e o u t p u t v o l t a g e a n d t h e c o m p e n s a t i o n c o m p o n e n t s . t h i s p i n i s a l s o m o n i t o r e d f o r u n d e r - v o l t a g e p r o t e c t i o n , w h e n t h e f b v o l t a g e i s u n d e r 5 0 % o f r e f e r e n c e v o l t a g e ( 0 . 4 v ) , b o t h o u t p u t s w i l l b e s h u t d o w n e d i m m e d i a t e l y . u g a t e t h i s p i n i s t h e g a t e d r i v e r f o r t h e u p p e r m o s f e t o f p w m o u t p u t . l g a t e t h i s p i n i s t h e g a t e d r i v e r f o r t h e l o w e r m o s f e t o f p w m o u t p u t . d r i v e t h i s p i n d r i v e s t h e g a t e o f a n e x t e r n a l n - c h a n n e l m o s f e t f o r l i n e a r r e g u l a t o r . i t i s a l s o u s e d t o s e t t h e c o m p e n s a t i o n f o r s o m e s p e c i f i c a p p l i c a t i o n s , f o r e x a m p l e , w i t h l o w v a l u e s o f o u t p u t c a p a c i t a n c e a n d e s r . f b l t h i s p i n i s t h e i n v e r t i n g i n p u t o f t h e l i n e a r r e g u l a t o r e r r o r a m p l i f i e r . i t i s u s e d t o s e t t h e o u t p u t v o l t a g e . t h i s p i n i s a l s o m o n i t o r e d f o r u n d e r - v o l t a g e p r o t e c t i o n , w h e n t h e f b l v o l t a g e i s u n d e r 5 0 % o f r e f e r e n c e v o l t a g e ( 0 . 4 v ) , b o t h o u t p u t s w i l l b e s h u t d o w n i m m e d i a t e l y . o c s e t c o n n e c t a r e s i s t o r ( r o c s e t ) f r o m t h i s p i n t o g n d , a n i n t e r n a l 4 0 m a c u r r e n t s o u r c e w i l l f l o w t h r o u g h t h i s r e s i s t o r a n d c r e a t e a v o l t a g e d r o p . w h e n v c c 1 2 r e a c h e s t h e p o r r i s i n g t h r e s h o l d v o l t a g e , t h e v o l t a g e d r o p o f r o c s e t w i l l b e m e m o r i e d a n d c o m p a r e d w i t h t h e v o l t a g e a c r o s s t h e l o w e r m o s f e t . t h e t h r e s h o l d o f t h e o v e r c u r r e n t l i m i t i s t h e r e f o r e g i v e n b y : the apw7068 has a internal ocp voltage source, and the value is around 0.25v. when the r ocset x i ocset is bigger than 0.25v or the o c s e t p i n i s f l o a t i n g ( n o r o c s e t r e s i s t o r ) , t h e o v e r c u r r e n t t h r e s h o l d w i l l b e t h e i n t e r n a l d e f a u l t v a l u e 0 . 2 5 v . ref_out this pin provides a buffed voltage, which is from internal reference voltage. it is recommended that a 1 m f capacitor is connected to ground for stability. when v ocset is above 1v, the ref_out buffer will be closed, the v ref_out is 0v. fs_dis this pin provides shutdown function. when pulling low the fs_dis pin near gnd will shutdown both regulators; almost any nfet or other pull-down device (< 1k. impedance) should work. upon release of the fs_dis pin, it will enable both outputs back into regulation. side) (l r r i i ow ds(on) ocset ocset limit - =
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 1 b l o c k d i a g r a m t y p i c a l a p p l i c a t i o n c i r c u i t s 1 3 2 4 6 5 7 boot fs_dis drive fb comp gnd fbl 14 12 13 11 9 10 8 ugate phase ocset lgate pgnd vcc12 ref_out v out1 v in1 12v v out2 v in2 v out1 on/off c1 c2 r2 r1 r3 c3 r4 r5 r gnd1 r gnd2 c5 l c out1 c out2 q1 q2 c in1 c in2 c 6 r 6 c 7 r7 c 8 apw7068 q3 2n7002 c 4 r8 apm2509 470ufx2 1uh 0.1uf 3.9k 0.01uf 2.2nf 22nf 1.5k 22 3k 470uf 2.5v 2.5k 1.17k 470uf 1uf 1uf 2.2 apm2506 2.2 2.2nf 470ufx2 q4 apm3055 3.3v 1.2v 12v * c5, r5 for specific application gnd gate control soft start and fault logic power- on-reset phase lgate fb vcc12 ugate v ref 135%v ref o.c.p comparator pwm comparator o.v.p comparator x1.35 comp boot v ref 50%v ref : 2 fbl drive oscillator fs_dis u.v.p comparator pgnd i ocset 40 m a ocset regulator 10v v ref (0.8v) 10 v error amp 1 error amp 2 sawtooth wave (300khz) reference buffer ref_out sense low side v ocset
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 2 f u n c t i o n d e s c r i p t i o n power-on-reset (por) the power-on-reset (por) function of apw7068 continually monitors the input supply voltage (v cc12 ), ensures the supply voltage exceed its rising por threshold voltage. the por function initiates soft-start interval operation while vcc12 voltage exceeds its por threshold and i nhibits operation under disabled status. s o f t - s t a r t f i g u r e 1 . s h o w s t h e s o f t - s t a r t i n t e r v a l . w h e n v c c 1 2 r e a c h e s t h e r i s i n g p o r t h r e s h o l d v o l t a g e , t h e i n t e r n a l r e f e r e n c e v o l t a g e i s c o n t r o l l e d t o f o l l o w a v o l t a g e p r o p o r t i o n a l t o t h e s o f t - s t a r t v o l t a g e . t h e s o f t - s t a r t i n t e r v a l i s v a r i a b l e b y t h e o s c i l l a t o r f r e q u e n c y . t h e f o r m u l a t i o n i s g i v e n b y : f i g u r e 2 . s h o w s m o r e d e t a i l o f t h e f b a n d f b l v o l t a g e r a m p s . t h e f b a n d f b l v o l t a g e s o f t - s t a r t r a m p s a r e f o r m e d w i t h m a n y s m a l l s t e p s o f v o l t a g e . t h e v o l t a g e o f o n e s t e p i s a b o u t 2 0 m v i n v f b a n d v f b l , a n d t h e p e r i o d o f o n e s t e p i s a b o u t 3 2 / f o s c . t h i s m e t h o d p r o v i d e s a c o n t r o l l e d v o l t a g e r i s e a n d p r e v e n t s t h e l a r g e p e a k c u r r e n t t o c h a r g e t h e o u t p u t c a p a c i t o r s . t h e f b v o l t a g e c o m p a r e s t h e f b l v o l t a g e t o s h i f t t o a n e a r l i e r t i m e t h e e s t a b l i s h m e n t a s f i g u r e 2 . t h e v o l t a g e e s t a b i l i s h m e n t t i m e d i f f e r e n c e f o r v f b a n d v f b l i s v a r i a b l e b y t h e o s c i l l a t o r . t h e f o r m u l a t i o n i s g i v e n b y : over-current protection connect a resistor (r ocset ) from this pin to gnd, an in- ternal 40 m a current source will flow through this resistor and create a voltage drop, which will be compared with the voltage across the lower mosfet. when the voltage across the lower mosfet exceeds the voltage drop across the r ocset , an over-current condition is detected and the controller will shutdown the ic directly, and the converter's output is latched. the apw7068 has a internal ocp voltage source, and the value is around 0.25v. when the r ocset x i ocset is bigger than 0.25v or the ocset pin is floating (no r ocset resistor), the over current threshold will be the internal default value 0.25v. the threshold of the over current limit is therefore given by: f i g u r e 2 . t h e c o n t r o l l e d s t e p p e d f b a n d f b l v o l t a g e d u r i n g s o f t - s t a r t f i g u r e 1 . s o f t - s t a r t i n t e r v a l 2560 f 1 ) t t ( t osc 1 2 ss = - d = ss osc 3 4 t 4 1 640 f 1 ) t t ( = = - d voltage (v) time v cc12 v out1 t 0 por v out2 t 1 t 2 voltage(v) 20mv 20mv 32/f osc 32/f osc t 3 t 4 time v fb v fbl for the over-current is never occurred in the normal operating load range; the variation of all parameters in the above equation should be determined. - the mosfet?s r ds(on) is varied by temperature and gate to source voltage, the user should determine the maximum r ds(on) in manufacturer?s datasheet. - the minimum i ocset (36ua) and minimum r ocset should be used in the above equation. - note that the i limit is the current flow through the lower mosfet; i limit must be greater than maximum output current add the half of inductor ripple current. side) (l r r i i ow ds(on) ocset ocset limit - =
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 3 f u n c t i o n d e s c r i p t i o n ( c o n t . ) output voltage selection the output voltage of pwm converter can be programmed with a resistive divider. use 1% or better resistors for the resistive divider is recommended. the fb pin is the inverter input of the error amplifier , and the reference voltage is 0.8v . the output voltage is determined by: where r1 is the resistor connected from v out1 to fb and r gnd1 is the resistor connected from fb to gnd. the linear regulator output voltage v out2 is also set by means of an external resistor divider. the fbl pin is the inverter input of the error amplifier, and the reference voltage is 0.8v. the output voltage is determined by: ? ? ? ? ? + = gnd1 out1 r r1 1 0.8 v ? ? ? ? ? + = gnd2 out2 r r4 1 0.8 v where r4 is the resistor connected from v out2 to fbl and r gnd2 is the resistor connected from fbl to gnd. linear regulator input/output capacitor selection the input capacitor is chosen based on its voltage rating. under load transient condition, the input capacitor will momentarily supply the required transient current. the output capacitor for the linear regulator is chosen to minimize any droop during load transient condition. in addition, the capacitor is chosen based on its voltage rating. a p p l i c a t i o n i n f o r m a t i o n another criterion is its efficiency of heat removal. the power dissipated by the mosfet is given by: p d = i out2 x (v in2 ? v out2 ) where i out2 is the maximum load current, v out2 is the nominal output voltage. in some applications, heatsink might be required to help maintain the junction temperature of the mosfet below its maximum rating. linear regulator compensation selection the linear regulator is stable over all loads current. however, the transient response can be further enhanced by connecting a rc network between the fbl and drive pin. depending on the output capacitance and load current of the application, the value of this rc network is then varied. pwm compensation the output lc filter of a step down converter introduces a double pole, which contributes with -40db/decade gain slope and 180 degrees phase shift in the control loop. a w h e n o c s e t p i n i s f l o a t i n g , t h e v o c s e t w i l l b e p u l l e d h i g h a n d t h e o v e r c u r r e n t t h r e s h o l d w i l l b e t h e i n t e r n a l d e f a u l t v a l u e 0 . 2 5 v . w h e n t h e v o l t a g e d r o p a c r o s s t h e l o w e r m o s f e t ? s r d s ( o n ) i s l a r g e r t h a n 0 . 2 5 v , a n o v e r - c u r r e n t c o n d i t i o n i s d e t e c t e d , t h e c o n t r o l l e r w i l l s h u t d o w n t h e i c d i r e c t l y , a n d l a t c h t h e c o n v e r t e r ? s o u t p u t . o v e r v o l t a g e p r o t e c t i o n the fb pin is monitored during converter operation by its own over voltage(ov) comparator. if the fb voltage is over 135% of the reference voltage, the controller will make low-side gate signal fully turn on until the fault events are removed. over-current protection (cont.) under voltage protection the fbl pin is monitored during converter operation by its own under voltage (uv) comparator. if the fbl voltage drop below 50% of the reference voltage (50% of 0.8v = 0.4v), a fault signal is internally generated, and the device turns off both high-side and low-side mosfet and the converter?s output is latched to be floating. the controller will shutdown the ic directly. shutdown and enable pulling low the fs_dis pin near gnd by an open drain transistor or other pull-down device (< 1k. impedance) will shutdown both regulators. upon release of the fs_dis pin, it will enable both outputs back into regulation. in shutdown mode, the ugate and lgate turn off and pull to phase and gnd respectively. linear regulator input/output mosfet selection the maximum drive voltage is about 10v when v cc12 is equal 12v. since this pin drives an external n-channel mosfet, therefore the maximum output voltage of the linear regulator is dependent upon the v gs . v out2max = 10 - v gs
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 4 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) the poles and zero of this transfer functions are: 1 c esr s c l s c esr s 1 gain out1 out1 2 out1 lc + + + = out1 lc c l 2 1 f p = out1 esr c esr 2 1 f p = the f lc is the double poles of the lc filter, and f esr is the zero introduced by the esr of the output capacitor. figure 3. the output lc filter v phase l v out1 c out1 esr compensation network among comp, fb and v out1 should be added. the compensation network is shown in figure 6 . the output lc filter consists of the out- put inductor and output capacitors. the transfer func- tion of the lc filter is given by: pwm compensation (cont.) figure 4. the lc filter gain and frequency f lc f esr -40db/dec -20db/dec frequency(hz) g a i n ( d b ) the pwm modulator is shown in figure 5. the input is the output of the error amplifier and the output is the phase node. the transfer function of the pwm modulator is given by: figure 5. the pwm modulator the compensation network is shown in figure 6. it provides a close loop transfer function with the highest zero crossover frequency and sufficient phase margin. the transfer function of error amplifier is given by: osc in pwm v v gain d = output of error amplifier g v osc pwm comparator driver driver phase v in1 osc ? ? ? ? + ? ? ? ? + = = sc3 1 r3 r1// sc2 1 r2 // sc1 1 v v gain out1 comp amp ( ) ? ? ? ? + ? ? ? ? + + ? ? ? ? ? + + ? ? ? ? + + = c3 r3 1 s c2 c1 r2 c2 c1 s s c3 r3 r1 1 s c2 r2 1 s c1 r3 r1 r3 r1 the poles and zeros of the transfer function are: figure 6. compensation network c2 r2 2 1 f z1 p = ( ) c3 r3 r1 2 1 f z2 + p = ? ? ? ? + p = c2 c1 c2 c1 r2 2 1 f p1 c3 r3 2 1 f p2 p = v ref v out1 v comp r 1 r 3 c 3 r 2 c 2 c 1 fb
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 5 3. place the first zero f z1 before the output lc filter double pole frequency f lc . f z1 = 0.75 x f lc calculate the c2 by the equation: r1 f f v v r2 lc o in osc d = 4. set the pole at the esr zero frequency f esr : f p1 = f esr calculate the c1 by the equation: 0.75 f r2 2 1 c2 lc p = 1 f c2 r2 2 c2 c1 esr - p = a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) pwm compensation (cont.) the closed loop gain of the converter can be written as: gain lc x gain pwm x gain amp figure 7. shows the asymptotic plot of the closed loop converter gain, and the following guidelines will help to design the compensation network. using the below guidelines should give a compensation similar to the curve plotted. a stable closed loop has a -20db/ decade slope and a phase margin greater than 45 degree. 1. choose a value for r1, usually between 1k and 5k. 2. select the desired zero crossover frequency f o : (1/5 ~ 1/10) x f s >f o >f esr use the following equation to calculate r2: 5. set the second pole f p2 at the half of the switching frequency and also set the second zero f z2 at the output lc filter double pole f lc . the compensation gain should not exceed the error amplifier open loop gain, check the compensation gain at f p2 with the capabilities of the error amplifier. f p2 = 0.5 x f s f z2 = f lc combine the two equations will get the following component calculations: 1 f 2 f r1 r3 lc s - = s f r3 1 c3 p = figure 7. converter gain and frequency output inductor selection the inductor value determines the inductor ripple current and affects the load transient response. higher inductor value reduces the inductor?s ripple current and induces lower output ripple voltage. the ripple current and ripple voltage can be approximated by: f lc frequency(hz) g a i n ( d b ) 20log (r2/r1) 20log (v in / g v osc ) f z1 f z2 f p1 f p2 f esr pwm & filter gain converter gain compensation gain in1 out1 s out1 in1 ripple v v l f v v i - = esr i v ripple out1 = d where f s is the switching frequency of the regulator. although increase of the inductor value and frequency reduces the ripple current and voltage, a tradeoff will exist between the inductor?s ripple current and the regulator load transient response time. a smaller inductor will give the regulator a faster load transient response at the expense of higher ripple current. increasing the switching frequency (f s ) also reduces the ripple current and voltage, but it will increase the switching loss of the mosfet and the power dissipation of the converter. the maximum ripple current occurs at the maximum input voltage. a good starting point is to choose the ripple current to be approximately 30% of the maximum output current. once the inductance value has been chosen, select an inductor that is capable of carrying the required peak current without going into
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 6 a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) output inductor selection (cont.) saturation. in some types of inductors, especially core that is made of ferrite, the ripple current will increase abruptly when it saturates. this will result in a larger out- put ripple voltage. output capacitor selection higher capacitor value and lower esr reduce the output ripple and the load transient drop. therefore, selecting high performance low esr capacitors is intended for switching regulator applications. in some applications, multiple capacitors have to be parallel to achieve the desired esr value. a small decoupling capacitor in parallel for bypassing the noise is also recommended, and the voltage rating of the output capacitors also must be considered. if tantalum capacitors are used, make sure they are surge tested by the manufactures. if in doubt, consult the capacitors manufacturer. input capacitor selection the input capacitor is chosen based on the voltage rating and the rms current rating. for reliable operation, select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage. the maximum rms current rating requirement is approximately i out1 /2 , where i out1 is the load current. during power up, the input capacitors have to handle large amount of surge current. if tantalum capacitors are used, make sure they are surge tested by the manufactures. if in doubt, consult the capacitors manufacturer. for high frequency decoupling, a ceramic capacitor 1uf can be connected between the drain of upper mosfet and the source of lower mosfet. mosfet selection the selection of the n-channel power mosfets are determined by the r ds(on) , reverse transfer capacitance (c rss ) and maximum output current requirement. there are two components of loss in the mosfets: conduction loss and transition loss. for the upper and lower mosfet, the losses are approximately given by the following: p upper = i out1 2 (1+ tc)(r ds(on) )d + (0.5)( i out1 )(v in1 )( t sw )f s p lower = i out1 2 (1+ tc)(r ds(on) )(1-d) where i out1 is the load current tc is the temperature dependency of r ds(on) f s is the switching frequency t sw is the switching interval d is the duty cycle note that both mosfets have conduction loss while the upper mosfet include an additional transition loss. the switching internal, t sw , is a function of the reverse transfer capacitance c rss . the (1+tc) term is to factor in the temperature dependency of the r ds(on) and can be extracted from the ?r ds(on) vs tempera ture? curve of the power mosfet.
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 7 l a y o u t c o n s i d e r a t i o n in any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator. with power devices switching at 300khz or above, the resulting current transient will cause voltage spike across the interconnecting impedance and parasitic circuit elements. as an example, consider the turn-off transition of the pwm mosfet. before turn-off, the mosfet is carrying the full load current. during turn-off, current stops flowing in the mosfet and is free-wheeling by the lower mosfet and parasitic diode. any parasitic inductance of the circuit generates a large voltage spike during the switching interval. in general, using short, wide printed circuit traces should minimize interconnecting impedances and the magnitude of voltage spike. and signal and power grounds are to be kept separate till combined using ground plane construction or single point grounding. figure 8. illustrates the layout, with bold lines indicating high current paths; these traces must be short and wide. components along the bold lines should be placed lose together. below is a checklist for your layout: - the metal plate of the bottom of the packages (qfn-16) must be soldered to the pcb and connected to the gnd plane on the backside through several thermal vias. - keep the switching nodes (ugate, lgate and phase) away from sensitive small signal nodes since these nodes are fast moving signals. therefore, keep traces to these nodes as short as possible. - the traces from the gate drivers to the mosfets (ug, lg, drive) should be short and wide. - place the source of the high-side mosfet and the drain of the low-side mosfet as close as possible. minimizing the impedance with wide layout plane between the two pads reduces the voltage bounce of the node. - decoupling capacitor, compensation component, the resistor dividers and boot capacitors should be close their pins. (for example, place the decoupling ceramic capacitor near the drain of the high-side mosfet as close as possible. the bulk capacitors are also placed near the drain). - the input capacitor should be near the drain of the upper mosfet; the output capacitor should be near the loads. the input capacitor gnd should be close to the output capacitor gnd and the lower mosfet gnd. - the drain of the mosfets (v in1 and phase nodes) should be a large plane for heat sinking. figure 8. layout guidelines vcc12 boot phase ugate lgate v in1 v out1 l o a d apw7068 drive fbl l o a d v out2 v in2 ref_out
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 8 p a c k a g e i n f o r m a t i o n s o p ? 1 4 s y m b o l min. max. 1.75 0.10 0.17 0.25 0.25 a a1 c d e e1 e h l millimeters b 0.31 0.51 sop-14 0.25 0.50 0.40 1.27 min. max. inches 0.069 0.004 0.012 0.020 0.007 0.010 0.010 0.020 0.016 0.050 0 0.010 1.27 bsc 0.050 bsc a2 1.25 0.049 0 8 0 8 l view a 0 . 2 5 seating plane gauge plane note: 1. follow jedec ms-012 ab. 2. dimension ? d ? does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. dimension ? e ? does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 10 mil per side. 3.80 5.80 8.55 4.00 6.20 8.75 0.337 0.344 0.228 0.244 0.150 0.157 d e b e 1 e see view a c h x 4 5 a a 1 a 2
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 1 9 p a c k a g e i n f o r m a t i o n q s o p - 1 6 0 l view a 0 . 2 5 gauge plane seating plane a a 1 e 1 e h x 4 5 c see view a d b e a 2 s y m b o l min. max. 1.75 1.24 0.15 0.25 a a2 c d e e l h millimeters b 0.20 0.30 0.635 bsc qsop-16 0.25 0.50 0.40 1.27 0.025 bsc min. max. inches 0.069 0.049 0.008 0.012 0.006 0.010 0.010 0.020 0.016 0.050 0 0.10 a1 0.25 0.004 0.010 4.90 bsc 0.193 bsc 5.99 bsc 0.236 bsc e1 3.91 bsc 0.154 bsc 0 8 0 8
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 0 p a c k a g e i n f o r m a t i o n q f n 4 x 4 - 1 6 a d e a1 a3 pin 1 corner e 2 l d2 e b s y m b o l min. max. 1.00 0.00 0.25 0.35 2.50 2.80 0.05 2.50 a a1 b d d2 e e2 e l millimeters a3 0.20 ref qfn4x4-16 0.30 0.50 2.80 0.008 ref min. max. inches 0.039 0.000 0.010 0.014 0.098 0.110 0.098 0.012 0.020 0.80 0.110 0.031 0.002 4.00 bsc 0.157 bsc 4.00 bsc 0.157 bsc 0.65 bsc 0.026 bsc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 1 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 16.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 16.0 ? 0.30 1.75 ? 0.10 7.50 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 sop - 14 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0 .40 6.40 ? 0.20 9.00 ? 0.20 2.10 ? 0.20 application a h t1 c d d w e1 f 330 1 62 +1.5 12.75+ 0.15 2 0.5 12.4 0.2 2 0.2 12 0. 3 8 0.1 1.75 0.1 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 qsop - 16 5.5 1 1.55 +0.1 1.55+ 0.25 4.0 0.1 2.0 0.1 6.4 0.1 5.2 0. 1 2.1 0.1 0.3 0.013 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 qfn4x4 - 16 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.10 1.5+0.10 - 0 .00 1.5 min. 0.6+0.00 - 0.40 4.35 ? 0.20 4.35 ? 0.20 1.1 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s h t1 a d a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 2 r e f l o w c o n d i t i o n ( i r / c o n v e c t i o n o r v p r r e f l o w ) t 25 c to peak tp ramp-up t l ramp-down ts preheat tsmax tsmin t l t p 25 t e m p e r a t u r e time critical zone t l to t p test item method description solderability mil - std - 883d - 2003 245 c, 5 sec holt mil - std - 883d - 1005.7 1000 hrs bias @125 c pct jesd - 22 - b,a102 168 hrs, 100 % rh, 121 c tst mil - std - 883d - 1011.9 - 65 c~150 c, 200 cycles esd mil - std - 883d - 3015.7 vhbm > 2kv, vmm > 200v latch - up jesd 78 10ms, 1 tr > 100ma r e l i a b i l i t y t e s t p r o g r a m package type unit quantity sop - 14 tape & reel 2500 qsop - 16 tape & reel 2500 qfn4x4 - 16 tape & reel 3000 d e v i c e s p e r u n i t
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 5 - m a r , 2 0 0 8 a p w 7 0 6 8 w w w . a n p e c . c o m . t w 2 3 profile feature sn - pb eutectic assembly pb - free assembly average ramp - up rate (t l to t p ) 3 c/second max. 3 c/second max. preheat - temperature min (tsmin) - temperature max (tsmax) - time (min to max) (ts) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 180 seconds time maintained above: - temperature (t l ) - time (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak /classificatioon temperature (tp) see table 1 see table 2 time within 5 c of actual peak temperature (tp) 10 - 30 seconds 20 - 40 seconds ramp - down rate 6 c/se cond max. 6 c/second max. time 25 c to peak temperature 6 minutes max. 8 minutes max. notes: all temperatures refer to topside of the package. measured on the body surface. c u s t o m e r s e r v i c e table 1. snpb entectic process ? package peak reflow temperature s package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 240 +0/ - 5 c 225 +0/ - 5 c 3 2.5 mm 225 +0/ - 5 c 225 +0/ - 5 c table 2. pb - free process ? package classification reflow temperatures package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 +0 c* 260 +0 c* 260 +0 c* 1.6 mm ? 2.5 mm 260 +0 c* 250 +0 c* 245 +0 c* 3 2.5 mm 250 +0 c* 245 +0 c* 245 +0 c* * tolerance: the device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means peak reflow temperature +0 c. for example 260 c+0 c) at the rated msl level. a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8 c l a s s i f i c a t i o n r e f l o w p r o f i l e s


▲Up To Search▲   

 
Price & Availability of APW7068KE-TRG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X